
Operational Amortization of Algorithmic

Performance in a Graph Database

ABSTRACT

Scaling the performance of graph database engines

executing graph algorithms on large datasets has been a

challenge. This work presents a formal approach to the

design of graph databases that yields amortized benefits for

the execution of graph algorithms. The first result is the

ability to support O(n) connectedness tests for large

arbitrary graph datasets. This result is enabled by

maintaining general graphs in a schema based decomposed

representation. Many familiar relational database concepts

map cleanly to this model including functional

dependencies, a normal form, an algebra, and opportunities

for optimizations based on both query semantics and

performance and/or distribution requirements.

1. INTRODUCTION
This paper presents a model for database implementation

based on a graph abstract data type. The approach has

several goals.

The first goal is to address the performance of graph

algorithm implementations as the graph datasets increase in

size. This approach maintains graphs in a specific internal

representation based on common schemas. The model

allows for O(n) connectedness tests across the

heterogeneous graphs by performing simple set

intersections on a set of derived connected components.

The ability to perform these tests at less than the O(nlogn)

limit is enabled by a relatively expensive (i.e. > O(nlogn))

import operation that stores the graphs persistently as a set

of connected components with common schemas. This

import operation is thus amortized over many

connectedness tests. We believe this technique can be

generalized to other graph algorithms to improve their

operational performance as well at the cost of the import.

A second goal is to try to put graph databases on a

theoretical foundation in a manner analogous to that

described for the relational model [1]. The specific internal

representation we propose enables a set of well-defined

operations that yield an algebra for manipulating graph

components that is analogous to the relational algebra. It

also takes into account semantic relationships in a manner

analogous to functional dependencies in the relational

model.

A third goal is to serve as design for a high-performance

implementation approach. By dividing general graphs into

sets of components with uniform schemas, low level

implementations will be encouraged to store data in

contiguous, homogeneous blocks. The ability to divide and

group the data this way can catalyze the optimization of

database features using already developed techniques from

relational database experiences [11].

Consider the general description of a graph G = (V, E)

where V is the set of vertices and E is the set of edges in the

graph. A graph database associates user data with the

vertices and edges of graphs. The data associated with

vertices is structured using vertex schemas (similar to the

schemas defined for relations). User data is associated with

the edges of the graph using edge schemas.

In the most general graph, no restrictions are placed on the

vertex and edge schemas. Data can be hung arbitrarily

from any vertex or edge. This means that different vertices

can have different vertex schemas and different edges can

have different edge schemas.

In this approach, such a general graph model is losslessly

decomposed into a set of connected components where for

each component, the vertex schemas are all identical and

the edge schemas are all identical. This paper refers to this

graph form as normal form. Conversions between the

general graph model and normal form are described in

Section 2.3.1.

2. DATABASE MODEL
The basic graph definition is extended for our graph

database model as follows:

A database is a set of graphs, D = {G1, G2, …}. Each

graph, is a set of connected components, Gi = Ci = {c1, 2,

…}. All the components in a graph share a common vertex

id space, i.e. some vertex ids may exist in multiple

components within the same graph.

The definition of connected component used in this here is

specific, adhering to the definition of a Common Schema

Tree (CST) which is given later. For the moment, the

important property is that these components can be written

as:

cj = {V, SV, E, SE}

Frank W. Miller

Dept. of Computer Science

University of Colorado Boulder

Irene L. Beckman

Google Boulder

where Sv = {A1, A2, …} is the set of attributes associated

with the vertex schema and SE = {B1, B2, …} is the set of

attributes associated with the edge schema. Each vertex

has a unique id associated with it that is not part of its

schema.

Figure 1 provides an example general graph. Each vertex

has a vertex id. The vertices and edges also have arbitrary

schemas associated with them. For example, vertex 2

contains a tuple that has attributes A and B and the directed

edge from vertex 2 to vertex 3 has attributes C and D.

1

2

3

4{C}

{A}

{E}

{C}

{A,B}

{C,D}

{A,B}

{B}
{D}

{D}

5
{F}

{G}

Figure 1: A General Form Graph

Using a notation where a different schema can be

associated with each vertex and each edge, this graph can

be represented as:

G = { {1{A},2{A,B},3,{A,B},4{B},5{F}},

 {(1,2){E},(2,1){C},(2,3){C,D},(2,4){D},

 (3,1){C},(4,3){D},(5,3){G} } }

Figure 2 illustrates the same graph after it has been

decomposed into one instance of a normal form. Note that

each component is connected and that some of the vertex

ids occur in multiple components. In addition, each

component has the same set of attributes for its vertices and

the same set of attributes for its edges.

Using the notation introduced earlier, this normal form

graph instance can be written as:

G = C = {{{1,2,3}, {A}, {(1,2),(2,3),(3,1)}, {C}},

{{2,3,4}, {B}, {(2,3),(2,4),(4,3)}, {D}},

{{1,2}, {}, {(1,2)}, {E}},

{{3,5}, {}, {(3,5)}, {G}},

{{5}, {F}, {}, { }} }
Since each of the components contains tuples that share the

same schemas, they are kept on secondary storage together.

The goal is to partition the graph data in a logical way to

facilitate various features that perform better in the

presence of locality. These range from basic functions like

searches based on attribute conditions [5,6] to higher level

functions like sharding for reliability and performance in a

distributed implementations [12,13].

1

2

3

{C}

{A}

{C}

{A}

{C}

{A}

2

3

4

{B}

{D}

{B}

{B}
{D}

{D}

1

2

{E}

3

5 {G}

5
{F}

Figure 2: An Instance of a Normal Form Graph

2.1 The First Graph Algorithm:

Connectedness
The first contribution associated with this paper beyond the

model itself is that we can potentially exploit the structure

of this decomposition to improve graph algorithm

performance operationally on large datasets. Perhaps the

most basic graph algorithm is the test for whether two

nodes, v1 and v2, are connected. This test is typically done

by executing the aforementioned Dijkstra’s algorithm on

the graph, or by a Breadth or Depth First Search [3]. The

best known running time for these algorithms is O(nlogn)

where n is the number of vertices in the general graph.

The decomposition just described yields the ability to

determine connectedness between vertices across

components in O(n) time. This result is made possible by

the relatively expensive graph import operation. The work

associated with the expensive import is thus amortized

across potentially many graph connectedness test

operations.

There are a number of approaches to accomplishing set

intersections in O(n) time, e.g. [14]. Hashing one of the

input sets is a common technique. To take advantage of

this performance result, we need to show that our set of

connected components can be used to perform the general

connectedness test using just a set intersection.

The proof is given for any arbitrary general graph, G. The

overall proof is dependent on the property that the

components in C fully represent the general graph G. This

description is given in the Appendix but for our purposes

here, G and the set of components in C share exactly the

same vertices and edges.

There are two cases 1) if G is connected, then a set

intersection between component vertex sets will prove

connectedness and 2) if no intersection between vertex sets

yields a single connected component that contains both

vertices, then they are not connected in G.

In the first case, if G is fully connected, there exists a

sequence of unions between the components in C that will

yield a single connected component that contains both

vertices being tested. A set of unions of the components in

C will eventually testing for connectedness between

elements of C means finding some set of intersections

between vertex sets such that their union results in a single

connected component. Since C fully represents G, testing

connectedness can be accomplished using a set intersection

between the vertex sets of the components in C.

In the second case, if G is not fully connected, it cannot be

represented as a single component. As G and C are

equivalent, there can be no union of connected components

from C that form a single connected component that

contains both vertices. Testing for not connected between

elements of C means proving no intersections exists

between sets that will allow them to be unioned into a

single component. Since there is, by definition, no subset

of C that can yield this connected single component after

unions, testing for not connected between vertices in C
means proving no series of intersections exists that allow

them to be unioned into a single component.

As a G must be either connected or disconnected, testing

for connectedness in G can be solved as a set intersection

problem □.

Other graph algorithms may also be able to take advantage

of this internal representation to yield amortized results.

Note that this algorithm is based on a series of intersection

operations between the components of C. Intersection is

one of several logical operations that can be performed on

the components based on they’re have common schemata.

Section 2.3 expands on this idea to define a set of

operations and the basis for an algebra that is briefly

outlined in Section 2.4.

2.2 Pattern Matching Affinity
The second observation regarding this graph database

model is that the structures of these normal form graphs

lend themselves to how queries are formulated and then

executed against graphs. We give several examples.

Consider the two query languages SPARQL [6] and Cypher

[5]. Both of these languages yield searches over

heterogeneous graphs for existential paths. Path criteria are

typically specified using conditions found in WHERE

clauses, i.e. logical and data type expressions.

Consider the following example SPARQL query that

matches the graph pattern on each graph in a dataset and

forms solutions which have the src variable bound to the

elements of the graph being matched.

SELECT ?src ?bobNick

WHERE

 {

 GRAPH ?src

 {?x foaf:mbox <mailto:bob@work.example>.

 ?x foaf:nick ?bobNick

 }

 }

The WHERE clause seeks the values of elements in the graph

based on their schema names, e.g. foaf:???. Whether

vertex or edge data, matches will search values associated

with attributes in matching parts of the schemas to find

solutions.

Consider the following example CYPER query:

MATCH

 (a:Person)-[:KNOWS]->(b)-[:KNOWS]->(c),

 (a)-[:KNOWS]->(c)

WHERE a.name = 'Jim'

RETURN b, c

This query is based on a graph with KNOWS as an edge label

and vertices representing individual people. The pattern

matching is based on the query variables, a, b, and c.

Neo4j will search the graph for instances of paths that

support the assertion that a and b who know each other and

know other people in common. c represents the common

person that a and b both know each other. Note the WHERE

clause here is being used to look at a single attribute with

its associated schema across the heterogeneous graph.

As a third example, consider again Dijkstra for computing

Single Source Shortest Paths. This algorithm is

representative of a variety of graph algorithms that are

based on a comparison function that uses edge weights.

This function will typically require that the two “weights”

of the elements along the edge path be of the same type, or

schema attribute. Since the normal form separates like data

elements by schema attributes, comparisons relevant to the

schemas of one normal form graph can be done

independently from the rest of the general graph and

efficiently since the data is stored together.

In all three examples, searches across a graph will tend to

partition themselves into elements that have comparisons

that are between two values of the same type. This basic

behavior maps cleanly onto the separated components

based on their schemas in this model representation. Each

expression element will display locality during its iterative

searches which bodes well for performance in algorithm

execution.

This locality can also be exploited in distribution. For

example, the current grdb code base uses a storage layer

that is based on local storage devices. However, the

database can be extended to make use of a distributed

storage layer, e.g. distributed file systems or key-value

databases [15]. Many of these implementations refer to

their replicated, distributed chunks of data as shards. A

natural mapping from this model would be to store

individual components in shards.

2.3 Component Operations
Structuring data using graphs allows users to take

advantage of various graph algorithms. This section

provides a set of basic operations upon which graph

algorithm implementations can be based. Figure 3

illustrates this operational flow in the grdb graph database

implementation.

Normal Form

Graph

Import
General Form

Graph

Graph Algorithms

(implemented

using Select,

Project, and Join)

Export

grdb

Figure 3: Graph Database Operations

Typically, a general form graph will be imported into the

database implementation. This import executes an instance

of the conversion from general to normal form algorithm.

Likewise, the general form graph can be reconstituted by

executing the export function.

Once imported, any graph level algorithms, e.g. Dijkstra,

Minimum Spanning Tree (MST), Strongly Connected

Components (SCC) [3], etc. are executed in the context of

the normal form representation. A set of component level

operations, i.e. select, project, and join, that are analogous

to the those found for manipulating tables in the relational

model are provided for manipulating the connected

components within a graph to accomplish the higher level

graph algorithm’s functions.

These component operations also form the basis of an

algebra similar to the relational algebra. This algebra can

support query optimizations.

2.3.1 Decomposition to Normal Form
In the database implementation, conversion to normal form

occurs during the import of a graph (perhaps from some

standard file format, e.g. RDF [7], into the database.

This operation will be defined as follows for the inclusion

in the component algebra discussed later.

C = δf (G)

where f is a set of functional dependencies (see Section

2.3.1.3)

Convert to normal form is accomplished using an algorithm

that bears resemblance to Kruskal’s algorithm [3] for

computing minimum spanning trees and Ullman’s

algorithm for subgraph isomorphism [10]. That is, a set of

connected components is incrementally built that have the

same vertex and edge schemas by decomposing the general

graph.

While there are many ways to decompose a graph, in this

work we focus on the schemas associated with the vertices

and edges as the basis for decomposition. The algorithm

builds a set of constant schema trees (CST) that fully

represent the general graph. It does this by extracting CSTs

from the general graph until the general graph is consumed.

Given our schema augmented representation of a general

graph G, define a set of CSTs as a set of components, C,

with fixed schemas initially as the empty set.

Select a vertex in u ∈ V to begin a new CST. Search each

neighbor of u, v ∈ V from the general graph for the vertex

with the largest common schema. A new graph c is then

defined by the common schemas associated with u and v

and the schema associated with the edge, (u, v) ∈ E. The

result is c = ({u,v},{(u,v)})

C = {}

while (V != {}) do

 Select u ∈ V

Select v ∈ neighbors(u) with the largest schema

common to u and v

if no such vertex v exists then

Complete-Edges(G)

Complete-Vertices(G)

break

 endif

 new c = ({u,v},{(u,v)}

CST-Grow(c, G)

Project c out of G

Insert c in C

endwhile

2.3.1.1 Growing the CST
The selection of the first and second vertices and the first

edge are crucial to the resulting set of components that are

yielded. This process can be steered by user semantics by

introducing a concept analogous to functional

dependencies. This idea is discussed in a later section.

Once the initial vertices and edge are chosen, the vertex

and edge schemas for the new component are set. The

algorithm then proceeds to successively search the

neighbors of this growing component. During each

iteration, another vertex and edge are chosen to add to the

component. The choice of which neighbor is made by

matching the vertex and edge schemas to those of the

neighbors. If they are a subset of one or more vertex, edge

pairs, then any desired criteria (probably driven by a query

language condition of some sort) is used to decide which.

CST-Grow(c, G)

 N = neighbors(c)

Search the edge set between c and N for an edge

(u, v) with u ∈ V and v ∈ N that have the largest

schemas in common with c

If no such edge exists then return

Remove v from G and insert (u, v) into c

CST-Grow(c, G)

end

When a vertex and edge pair is selected for addition to the

component (either initially or during growth), the vertex

and edge schemas may be subsets of the vertex and edge

schemas from the general graph.

After the new component with its fixed schemas cannot be

added to, it is used as a projection to remove attributes from

the general graph. This procedure is then repeated to grow

another constant schema component from the remaining

general graph. When all the vertices and edges of the

original general graph are consumed, i.e. V and E both

become empty sets, the algorithm terminates.

2.3.1.2 Taking Care of Loose Ends
There may be a point in the execution of this algorithm

when all the pairs of vertices have distinct attributes. After

that, all the edges are made into components that contain an

edge schema and the two vertices that have empty schemas.

When all the edges have been removed, each remaining

vertex becomes a single vertex component.

CST-Complete-Edges(G)

If no edges remain in G return

Remove an edge e = (u,v) from G

 new c = ({u,v},{(u,v)})

Insert c in C

CST-Complete-Edges(G)

end

Each c created in this construction has the entire edge

schema from that edge. The two vertices have no schemas

however, only their vertex ids.

A similar construction is then done with the remaining,

edgeless vertices. Each c created by this algorithm takes on

the entire vertex schema of that vertex.

CST-Complete-Vertices(G)

if no vertices remain in G return

Remove a vertex v from G

new c = ({u},{})

Insert c in C

CST-Complete-Vertices(G)

end

2.3.1.3 Functional Dependencies
The selection of the first and second vertices and the first

edge during the initial selections for a CST are crucial to

the resulting set of components that are yielded. If the first

vertex has a schema with more than one attribute and/or the

first edge has a multi-attribute schema, it is possible to

specify that subsets of these attributes be treated as

functionally dependent for the purposes of decomposition.

Such grouping might be appropriate based on data

semantics for example.

The analogy here to functional dependencies in the

relational model has to do with the observation that some

relational normal forms, e.g. 3rd Normal Form, typically

take functional dependencies into account when

restructuring tables. This concept is analogous to grouping

the vertex and edge schemas of the general graph to steer

the decomposition algorithm yielding potentially different

component sets.

2

3

{A,B}

{C,D}

{A,B}

1

2{C}

1

2

{E}

2

4

{D}

3

4

{D}

1

3

{C}

3

5 {G}

1

4
{B}

{A}

5
{F}

Figure 4: A Normal Form Graph Decomposition Based

on a Functional Dependency

Figure 4 illustrates this idea. Assume that the schema

associated with vertices 2 and 3 from Figure 1 are defined

as A functionally determines B or A→B. This dependency

is asserted when the decomposition algorithm is applied

during the graph import. The schema {A,B} are not treated

as separate attributes for purposed of deciding the greatest

common schema during the initial seeding of a CST. This

causes the component {{2,3},{(2,3)}} to be chosen first

with the remaining components yielded as a consequence.

2.3.2 Intersection and Union
The remainder of Section 2.3 is a description of several

operators that form the basis of a graph component algebra

based on the normal form. For all of these descriptions, the

general form graph in Figure 1 and the decomposition in

Figure 2 will be used throughout.

The graph components are composed of sets of vertices and

edges. The first operators are component intersection and

union. As we have seen, the intersection operator is used

during the execution of connectedness tests.

In the case of intersection, the vertex sets of each

component and the edge sets for each component are

intersected. For union, the vertex sets for each component

and the edge sets for each component are unioned. In both

cases, the schemas for the two components are unioned.

Given two components c1 and c2, the intersection creates a

new component c’ as c’ = c1 ∩ c2 where:

1) V’ = V1 ∩ V2

2) E’ = E1 ∩ E2

3) Sv’ = SV1 ⋃ SV2

4) SE’ = SE1 ⋃ SE2

Figure 5 illustrates and example where the two large

components in Figure 2 are intersected.

2

3

{A,B}

{C,D}

{A,B}

Figure 5: Intersection of the Two Large Components in

the Decomposition from Figure 2

c’ = {{2,3}, {A,B}, {(2,3)}, {C,D}}

Given two components c1 and c2, the union creates a new

component c’ as c’ = c1 ⋃ c2 where:

1) V’ = V1 ⋃ V2

2) E’ = E1 ⋃ E2

3) Sv’ = SV1 ⋃ SV2

4) SE’ = SE1 ⋃ SE2

Figure 6 illustrates and example where the two large

components in Figure 2 are unioned.

1

2

3

{A,B}
{C,D}

{A,B}

{A,B}

4
{A,B}

{C,D}

{C,D}

{C,D}

{C,D}

Figure 6: Union of the Two Large Components in the

Decomposition from Figure 2

c’ = {{1,2,3,4}, {A,B}, {(2,1),(2,3),(2,4),(3,1),(4,3)}, {C,D}}

The union is analogous to an outer join in the relational

model. This is because the union joins the structures,

collapsing on vertex ids, and unions the schemas. The

resulting component has the same vertex schema for all of

its vertices and the same edge schema for all of its edges.

If, as in the case of these decomposed components, they

were originally drawn from a general graph that had

varying schemas across its vertices and edges they now

potentially have a larger, more uniform schema than before

decomposition. Thus, performing a union of the

decomposed components does not yield the exact original

general graph. The new schema attributes are given default

values.

2.3.3 Projection
For a normal form component, a projection creates a new

component such that:

1) the vertices and edges of the new component are

equal to those in the given component

2) the vertex and edge schemas of the new

component are subsets of the vertex and edge

schemas of the given component

This operation is analogous to projection for the relational

model. Instead of slicing a relation by attribute, we slice

away some of the user data associated with the vertices and

edges of the component while leaving the component

structure intact.

The result is a component with the same vertices and edges

but with fewer attributes associated with the vertex and

edge schemas. Specifically, a new component, c’ = {V’,

SV’, E’, SE’}, is generated by applying the projection

operator, π, to c:

c’ = πX,Y(c)
where:

1) V’ = V

2) E’ = E

3) SV’ = X ⊆ Sv

4) SE’ = Y ⊆ SE.

Figure 7 illustrates a projection on the component given in

Figure 6. The structure of the component remains the

same. Only the vertex and edge schemas change.

1

2

3

{A}
{C}

4{C}

{C}

{C}

{C}

{A}

{A}

{A}

Figure 7: A Projection on the Component in Figure 5

πA,C(c) = {{1,2,3,4}, {A}, {(2,1),(2,3),(2,4),(3,1),(4,3)}, {C}}

If the attributes specified to the projection are empty sets,

the data associated with the schemas is cleared. Projection

can thus be used to clear all the data from a normal form

graph. Simply iterate over the components of the graph

and project out all their schemas. This operation clears all

the data from the normal form graph but leaves its structure

intact.

2.3.4 Selection
For a given component, a selection creates a new

component where the vertex and edge schemas are equal to

the vertex and edge schemas of the given component.

Also, the vertices and edges contained in the new

component have the following properties:

1) the vertices in the new component are a subset of

the vertices in the given component

2) the edges in the new component are those from the

given component such that each edge endpoint

must be a vertex in the new component

This operation is also analogous to its counterpart in the

relational model. Similar to slicing tuples out of a relation,

this operation slices a component with fewer vertices and

edges but with the same vertex and edge schemas.

Specifically, a new component, c’, is generated by applying

the selection operator, σcondition, to c:

c’ = σcondition(c)
where:

1) V’ ⊆ V

2) E’ ⊆ E such that ∀e ∈ E’, such that if e= (vi, vj),

then both vi, vj ∈ V’

3) Sv’ = Sv and SE’ = SE

4) all the vertices and edges in V’ and E’,

respectively, meet the condition specified by

condition.

Figure 8 illustrates an example selection. Consider a

condition where the value associated with the C attribute

yields only the edges (1,2) and (2,4). The resulting

component has a different structure but the same schemas

as the input component.

1

2{A,B}
{C,D}

{A,B}

4
{A,B}

{C,D}

Figure 8: An Example Selection on the Component in

Figure 6

σcondition(C) (c) = {{1,2,4}, {A,B}, {(2,1),(2,4) }, {C,D}}

It is possible that this operation can result in disconnected

components. The database implementation discussed later

creates new components for each disconnected result.

2.3.5 Inner Vertex Join and Conversion to General

Form
Consider the decomposition given if Figure 2. Since this

set of components fully represents the general graph given

in Figure 1, it is possible to reconstruct the general graph

from the normal form components. This operation is

referred to as an Inner Vertex Join.

Given a set of components C = {c1, c2, …, cn}, the inner

join yields a general graph, G. The vertices of G are the

union of the vertices across the components of C. The

edges of G are the union of the edges across the

components of C. The schema for each vertex in G is the

union of the schemas in each component that the vertex

appears in. Likewise, the schema for each edge in G is the

union of schemas in each component that the edge appears

in. This operation is denoted:

G = ⨝(C)

Since C is a set of components, this expression can be

written as:

G = ⨝({c1,c2,…,cn})

If this operation is applied to a set of components that were

decomposed from a general graph, and these components

fully represent the general graph, then this operation can be

used to losslessly reconstruct the original general graph.

For example, if C is the set of components in Figure 2, the

Inner Vertex Join of these components yields the general

graph originally given in Figure 1.

2.4 Component Algebra
An interesting observation yielded by the definition of

these operators is the ability to treat them as algebraic.

This means we should be able to affect query optimizations

(not discussed here) based on transformations and cost

models.

Table 1: Component Algebraic Rules

3. IMPLEMENTATION
This section provides an overview of the implementation

called grdb [16]. The implementation is targeted at a single

engine running on a single system with local file storage.

The database engine manages a set of graphs that are each a

set of decomposed, connected components.

When new components are created, all user data associated

with the vertices and edges are duplicated. This allows for

query languages to use these operations as pass by value

inputs and as intermediate values when building

expressions based on the algebraic operations given in the

last section. This approach facilitates the implementation

of query transformations to address query performance.

Given the augmented graph description, the representation

used to implement a component is based on an edge list

representation and consists of:

1) Vertex schema

2) Edge schema

3) Set of vertices where each vertex is identified by a

globally unique vertex id and each vertex has a

tuple associated with it that is described by the

vertex schema

4) Set of edges where each edge is defined by pair of

vertex ids that identify a directed edge from id1 to

id2. Each edge has a tuple associated with it that is

described by the edge schema.

Definition Commutative Associative Distributive

Decomposition
C = δf (G)

N/A N/A N/A

Intersection

c’ = c1 ∩ c2

c1 ∩ c2 =

c2 ∩ c1

(c1 ∩ c2) ∩ c3 =

c1 ∩ (c2 ∩ c3)

N/A

Union

c’ = c1 ⋃ c2

c1 ⋃ c2 =
c2 ⋃ c1

(c1 ⋃ c2) ⋃ c3 =
c1 ⋃ (c2 ⋃ c3)

N/A

Projection
c’ = πX,Y(c)

No No c’ = πX1٧X2,Y1٧Y2 (c)=

πX1,Y1(c) ⋃ πX2,Y2(c)

Selection

c’ = σcondition(c)

No No c’ = σcond1٨ cond2 (c)=

σcond1 (c) ∩ σcond2 (c)

Inner Join

G = ⨝(C)

Yes, any
component

order

Yes, any
sequence of

pairings of

components

N/A

5) A list of enum types associated with this graph

The basic implementation provides base operations and a

simple shell to support command line access to these

operations. Work is in progress to port both OpenCypher

and SPARQL query languages to grdb.

These basic data structures exist in two places. The graphs

are maintained persistently on disk and elements of these

structures are brought into memory as needed by various

operations.

Each graph in the database has a numbered directory under

the home ~/.grdb Each graph directory contains a set of

numbered component directories. Each component

directory contains the files listed in Figure 9.

tuple

id

.
.
.

/v

~/.grdb/<graph>/<component>

ename

name

.
.
.

bt

/sv /e

ename

name

.
.
.

bt

/se

tuple

id2

.
.
.

id1

string

pool

.
.
.

name

/enum

No ordering in any of these files

Figure 9: grdb On-Disk Graph Data Structure

The /enum file contains the enums defined for both vertex

and edges schemas for this component. Each entry in this

file contains the enum name and a list of strings that

comprise the enum values. These enums are available for

both vertex and edge types.

The /sv file contains the vertex schema. The /se file

contains the edge schema. Each file is a list of attributes

made up of a base type, attribute name and enum pointer if

the base type is enum.

The /v file contains the vertices for the component and the

/e file contains the edges. The vertex file entries are the

vertex id followed by its tuple if it exists. The edge file

entries are the pair of vertex ids followed by the edge tuple

if it exists.

All of these files are maintained unordered. That means it

is necessary to iterate over them to find specific elements.

The grdb implementation reads and writes enums and

schemas in their entirety. Enums and schemas should be

relatively small compared to the graph vertex and edge data

and should fit in main memory. Since the bulk of the graph

data is kept in the vertex and edge files, operations that

make use of these files typically shuffle portions of them in

and out of main memory as needed. This is necessary since

the assumption is that these data may be larger than main

memory.

The division of component data into vertex and edge lists is

intentional. Since the vertex file maintains a list of vertices

that are all the same schema and the edge file maintains a

list of edges that are all the same schema, each will be

stored together and iterations take advantage of locality.

The uniform schema also allows for indexes to be built in a

manner analogous to indexes on tables in the relational

model. This can be done if rapid searches across the vertex

or edge data are required.

Figure 10: grdb In-Memory Graph Data Structure

Figure 10 illustrates this data structure when kept in

memory. This diagram shows the relationships between

various structures. This entire data structure is not

expected to be instantiated at any given time. Rather its

elements and structure serve as a cache template that allows

portions of the on-disk data to be held in memory

temporarily.

The implementation includes routines to bring portions of

the on-disk structure into memory on demand. For enums

and schemas, the entire structure is typically read in or

written out to disk. These structures are small compared to

the vertex and edge data and should fit in main memory.

For vertices and edges, the assumption is that these files are

larger than main memory so subsets of these files are

cached into memory as needed.

3.1 Schema Base Types
The implementation uses base data types to represent graph

data. The enum type is composed of two chars that

represent indices. The first is the index of the enum with

respect to the containing graph and the second is the index

of the item within the enum.

3.2 Enum Types
Enum types provide an efficient way to represent groups of

string values as integer values. These types improve

efficiency by allowing value comparisons to be done based

on integer values rather than string comparisons. The

importation of a graph evaluates strings in the graph data

and converts them to enums internally.

Each enum type is represented internally by a string pool.

A string pool is a list of strings and an array of indexes to

their locations in a single allocated block of memory. This

packed representation provides efficient storage for the

strings on-disk.

4. RELATED WORK
Interest in graphs as a basis for database implementation

has increased lately. Recent examples of large scale graphs

are social networks, CRM, and content distribution.

Internet scale graph datasets are proliferating, e.g.

[18,19,20]. Recent database conferences contain many

papers on algorithmic work on these large graph datasets.

Less work has been done on the internal design and

implementation of graph engines.

That said, the idea of decomposing graphs for efficient

storage has also been explored recently. The example

given in [8] represents a recent graph database design that

focuses on graph decomposition as well. In this work

however, the focus in on finding and storing subgraphs that

have specified degrees, referred to as k-cores. The

motivation is similar, to find a decomposition that supports

efficient access to large graph dataset based on graph

algorithms. The work focuses on identifying these

commonly used graph cores in order to hold them in main

memory. The work in [9] focuses on determining clusters

within a large graph based on “structural similarity.” This

similarity can be described anecdotally as subgraphs that

are well connected and that are each connected to each

other by only a few paths. This overall approach bears

similarity to the k-cores described in [8] in that both yield

decompositions of a larger general graph based only on the

structure of the graph. They do not take into account the

schemata associated with the graph.

Neo4j [5] is a recent graph database product. This product

provides extensive graph database modeling capabilities

and an interesting graph database query language called

Cypher. The Neo4j data model is based on general graphs

in our terminology. They refer to this as the Labeled

Property Graph.

In a sense, this work targets exactly what this reference

calls, the “holy grail of graph database scale.” (p.169)

Rather than focusing on the modeling and language aspects

of the database, this paper focuses on the internal

implementation to directly address performance.

Regarding Neo4j’s internal implementation:

“Neo4j stores graph data in a number of different

store files. Each store file contains the data for a

specific part of the graph (e.g., there are separate

stores for nodes, relationships, labels, and

properties). The division of storage responsibilities

—particularly the separation of graph structure from

property data—facilitates performant graph

traversals, even though it means the user’s view of

their graph and the actual records on disk are

structurally dissimilar.”

Neo4j also appears to use a separated internal

representation of the graph but does so in a way differently

than presented here. Graph structure (nodes and

relationships) are stored separately from user data (labels

and properties). While grdb will provide the same

dissimilar internal representation from the user’s view, the

normal form graph representation keeps structure and user

data together. This choice is driven by the desire to

decompose based on schema to enable the formal treatment

that the normal form enables.

Finally, we compare our approach to a survey of graph

database models work up until 2008 [4] in order to place

the recent work in context. Early approaches used a simple

graph model as a basis but typically allowed for zero or one

value to be associated with edges and vertices. The

research direction moved towards allowing for more

complexity, not necessarily uniformly typed, across the

graph representation. This followed from the interest in

object orientation and support for complex documents as

data types in databases that emerged at the same time. The

approach described here also extends the complexity of

data associated the vertices and edges but provides an

internal model that focuses on the similarities in the data

across the graph to allow for efficient storage

representations.

This reference discusses major features like integrity

constraints, a query language, redundancy, and functional

dependencies across the breadth of graph database

implementations up to that time. This work focuses on the

underlying implementation of the database engine and so

Base Type Length (chars)

CHAR 1

VARCHAR 256

BOOL 1

ENUM 2

INT 8

FLOAT 4

DOUBLE 8

DATE 10

TIME 8

the feature set given in Table 2 that reflects grdb is based

on that.

Table 2: grdb Implementation According to the

Standard Characteristics defined in Appendix A of [4]

Characteristics/Database Model
grdb

2016

Basic

Foundation
Graph Model

x

Digraph
Node Labeled x

Edge Labeled x

Support
Schema x

Tuples x

Query Language

Algebraic – Procedural x

Logic – Declarative x

Query
SPARQL port in

progress

Path Queries
OpenCypher port

in progress

Integrity

Constraints

Schema Instance

Consistency

Per Component

Functional Dependencies x

Implementation x

Motivation
Efficiency for

large graphs

5. DISCUSSION
The contributions of this paper provide a rich starting point

for additional research. 1) The graph data model with its

operators and support for functional dependencies, 2) the

O(n) connectedness test across the general graph using

component vertex set intersections as a template for other

graph algorithm implementations, 3) the affinity for

separating iterations yielded for queries based on WHERE

clause expressions and 4) an implementation approach that

takes advantage of file system locality

Schema spanning trees as the component structure should

be explored in more detail. The simple algorithm outlined

in this paper can be replaced with any number of

algorithms. This work provides and analogy for functional

dependencies that “drives” decomposition but other criteria

for steering decompositions to address specific algorithms

are possible.

The use of constant schemas for the normal form graphs

makes indexing attributes across a general graph easier to

implement. Vertex and edge files are maintained

unordered but the the contiguous data storage enabled by

this approach yields opportunities for efficient sparse

indexes to be built on both vertex and edge sets.

Definition of additional normal forms that have their bases

for decomposition other than uniform vertex and edge

schemas should be explored.

The idea of functional dependencies and normal forms

mean that graph database design theory, in a manner

analogous to Enitity/Relationship diagrams [17] should be

explored based on this model.

This graph database model can serve as a basis for

undirected graphs. The typical conversion for each

undirected edge to two directed edges is the basis here as

well. The two edges will have identical edge tuples that

will need to be kept consistent during graph operations.

This consistency requires a pairing of edges to be added to

the edge representation. This is considered to be an area

for future work.

The authors will not patent this work. The implementation

is and will remain available as open source at [16]. The

authors would like to thank Craig Swank of SendGrid for

motivational discussions.

6. REFERENCES
[1] Codd, E. F. 1970. A Relational Model of Data for Large

Shared Data Banks. Communications of the ACM 13, 6 (Jun.

1970).

[2] Garcia-Molina, H., Ullman, J. D., and Widom, J. Database

Systems: The Complete Book (2nd Edition), Prentice-Hall,

2009.

[3] Cormen, T. H., et. Al., Introduction to Algorithms Third

Edition, MIT Press, 2014.

[4] Angles, R. and Gutierrez, C., Survey of Graph Database

Models, ACM Computing Surveys, 40, 1 (Feb. 2008).

[5] Robinson, I., Webber, J., and Eifrem, E., Graph Databases:

New Opportunities for Connected Data, 2nd Ed., O'Reilly,

2015.

[6] W3C, SPARQL Query Language for RDF,
https://www.w3.org/TR/rdf-sparql-query

[7] W3C, Resource Description Framework (RDF) Current

Status,
https://www.w3.org/standards/techs/rdf#w3c_all

[8] Wen, D., et. Al., “I/O Efficient Core Graph Decomposition at

Web Scale”, Proc. of ICDE, 2016.

[9] Chang, L., et. Al., “pSCAN: Fast and Exact Structural Graph

Clustering”, Proc. of ICDE, 2016.

[10] Ullman, J., “An Algorithm for Subgraph Isomorphism”,

Journal of the ACM, 23, 1, 1976.

[11] Chaudhuri, S., “An Overview of Query Optimization in

Relational Systems”, PODS 98.

[12] Chang, F, et. Al., "Bigtable: A Distributed Storage System

for Structured Data", Symposium on Operating Systems

Design and Implementation (OSDI), USENIX, 2006.

[13] DeCandia, G., et. Al., "Dynamo: Amazon's Highly Available

Key-value Store", Symposium on Operating System

Principles (SOSP), ACM, 2007.

[14] Ding, B. and Konig, A. C., “Fast Set Intersection in

Memory”, Proc. of the VLDB Endowment, 4, 4, 2011.

https://www.w3.org/TR/rdf-sparql-query
https://www.w3.org/standards/techs/rdf#w3c_all

[15] Lakshman, A. and Malik P., “Cassandra – A Decentralized

Structured Storage System”, Operating Systems Review, 44,

2, 2010.

[16] grdb Graph Database,
https://github.com/fwmiller/grdb

[17] Chen, P., “The Entity-Relationship Model – Toward a

Unified Model of Data”, ACM Transactions on Database

Systems, 1, 1, 1976

[18] Van Rijswijk-Deij, R., et. Al., “The Internet of Names:

ADNS Big Dataset”, Proc. of SIGCOMM ’15.

[19] Panchenko, A., et. Al., “Website Fingerprinting at Internet

Scale”, NDSS ’16.

[20] AWS Public Datasets,
https://aws.amazon.com/public-datasets/

APPENDIX
Theorem 1.

Given a graph G, fully represented (Def. 3) as a set of

connected components (Def. 1), C, testing for

connectedness G is equivalent to a set intersection problem

between the components of C.

Proof. All paths in C exists in G (Lemma 1) and all paths

in G exists in C (Lemma 2). C and G are path equivalent.

If there is an ordered list of components in C such that an

intersection containing at least one common vertex exists

between every component and the union of all its previous

component's vertex sets, then C is connected. (Lemma 4).

When C is disconnected, no such ordered list can be found

(Lemma 4). Therefore, testing C for connectedness can be

solved as a set intersection problem. Since connectedness

determines connecting paths and C and G are path

equivalent, testing for connectedness in G is equivalent to a

set intersection problem. □

Definition 1. Let c be a subgraph of G (Def. 2). c is

considered a connected component if there exists a pathij in

c for all vertex pairs where i, j are elements of the vertex set

V(c).

Definition 2.

Let G be a graph with a vertex set, V(G), and an edge set,

E(G). Let g be another graph with a vertex set, V(g), and an

edge set, E(g). g is a subgraph of G if V(g) is a subset of

V(G) and E(g) is a subset of E(G).

Definition 3.

Given a graph G and a set of connected components C =

{c1,c2,…,cn} where each ci is a subset of G, C fully

represents G if and only if:

⋃ 𝐸(𝑐) = 𝐸(𝐺)

𝑐∈𝐶

⋃ 𝑉(𝑐) = 𝑉(𝐺)

𝑐∈𝐶

Lemma 1.

Given vertices i, j, for all pathij that transverse some

component, c of C, these paths also exist in G.

Proof. By contradiction. Assume that pathij can exist in c

but not in G. The path can be described as a ordered set of

edges, pathij is a subset of E(c). Since c is an element of C,

E(c) is an element of E(G) (Def. 3). By the transitive

property, pathij is an element of E(G) and pathij can be

found in G. This is a contradiction exists so if pathij exists

in c it also exists in G. □

Lemma 2.

If a path exists in G then that same path is present in some

subset of C.

Proof. By contradiction. Assume pathij exists in G but is

not present in any subset of C. Since the path can be

described as a ordered set of edges, pathij a subset of E(G).

By definition of fully represented (Def. 3), E(G) =

⋃ 𝐸(𝑐)𝑐 ∈ 𝐶 . Based on this equivalence, pathi is a subset of

⋃ 𝐸(𝑐)𝑐 ∈ 𝐶 . Since no new edges are created when

components union together, pathij must exists in some

subset of C. But, this is a contradiction and therefore, if a

path exists in G then that same path is present in some

subset of C. □

Lemma 3.

Two connected components ci and cj form a single

connected component if and only if 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅.

Proof. By contradiction. Assume ci and cj are connected

components where 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅, yet they do not form

a single connected component. Since 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅,

there is a vertex, v, such that 𝑣 ∈ 𝑉(𝑐𝑖), 𝑉(𝑐𝑗). A path exists

between v and all elements of V(ci) and V(cj) (Def. 1). As

such, a path exists between all elements of V(ci) and V(cj)

forming a connected component. But this is a contradiction.

Therefore, if ci and cj are connected components where

𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅, they form a single connected

component.

Now assume ci and cj could form a single connected

component but that 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) = ∅. If ci and cj are a

single component, then pathxy can be found spanning both

components (Def. 1). A path can be defined as an ordered

set of vertices. For pathxy to span ci and cj, there must be a

subset of the path that is a member of both V(ci) and V(cj)

which allows the transition from one component to another

to occur. This means that 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅ which is a

contradiction. Therefore, ci and cj can be considered a

single connected component if 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅. □

Lemma 4.

C can form a single connected component if and only if

there exists an ordering of the elements of C such that:

∀𝑐∈𝐶 {⋃ 𝑉(𝑐𝑖)

𝑛−1

𝑖=1

} ∪ 𝑣(𝑐) ≠ ∅

Proof. By Induction.

https://github.com/fwmiller/grdb

Base Case: C1 = {c1}, c1 is by definition a single connected

component so the base case holds.

Inductive Step: Assume Cn = {cn} for n=1 per the base case.

If Cn+1 = {c1, c2,…, cn+1} then V(cn+1) has a non empty

intersection with V(Cn), then Cn and cn+1 are a single

component (Lemma 3). Therefore, all elements up to an

including cn+1 can be considered a single component. If no

such intersection exists, while Cn may be a single

component, the elements of cn+1 are not included in that

component (Lemma 3). □

