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ABSTRACT 

Scaling the performance of graph database engines 

executing graph algorithms on large datasets has been a 

challenge.  This work presents a formal approach to the 

design of graph databases that yields amortized benefits for 

the execution of graph algorithms.  The first result is the 

ability to support O(n) connectedness tests for large 

arbitrary graph datasets.  This result is enabled by 

maintaining general graphs in a schema based decomposed 

representation. Many familiar relational database concepts 

map cleanly to this model including functional 

dependencies, a normal form, an algebra, and opportunities 

for optimizations based on both query semantics and 

performance and/or distribution requirements. 

 

1. INTRODUCTION 
This paper presents a model for database implementation 

based on a graph abstract data type.  The approach has 

several goals. 

The first goal is to address the performance of graph 

algorithm implementations as the graph datasets increase in 

size.  This approach maintains graphs in a specific internal 

representation based on common schemas.  The model 

allows for O(n) connectedness tests across the 

heterogeneous graphs by performing simple set 

intersections on a set of derived connected components.  

The ability to perform these tests at less than the O(nlogn) 

limit is enabled by a relatively expensive (i.e. > O(nlogn) ) 

import operation that stores the graphs persistently as a set 

of connected components with common schemas.  This 

import operation is thus amortized over many 

connectedness tests.  We believe this technique can be 

generalized to other graph algorithms to improve their 

operational performance as well at the cost of the import. 

A second goal is to try to put graph databases on a 

theoretical foundation in a manner analogous to that 

described for the relational model [1].  The specific internal 

representation we propose enables a set of well-defined 

operations that yield an algebra for manipulating graph 

components that is analogous to the relational algebra.  It 

also takes into account semantic relationships in a manner 

analogous to functional dependencies in the relational 

model. 

A third goal is to serve as design for a high-performance 

implementation approach.  By dividing general graphs into 

sets of components with uniform schemas, low level 

implementations will be encouraged to store data in 

contiguous, homogeneous blocks.  The ability to divide and 

group the data this way can catalyze the optimization of 

database features using already developed techniques from 

relational database experiences [11]. 

Consider the general description of a graph G = (V, E) 

where V is the set of vertices and E is the set of edges in the 

graph.  A graph database associates user data with the 

vertices and edges of graphs.  The data associated with 

vertices is structured using vertex schemas (similar to the 

schemas defined for relations).  User data is associated with 

the edges of the graph using edge schemas. 

In the most general graph, no restrictions are placed on the 

vertex and edge schemas.  Data can be hung arbitrarily 

from any vertex or edge.  This means that different vertices 

can have different vertex schemas and different edges can 

have different edge schemas. 

In this approach, such a general graph model is losslessly 

decomposed into a set of connected components where for 

each component, the vertex schemas are all identical and 

the edge schemas are all identical.  This paper refers to this 

graph form as normal form.  Conversions between the 

general graph model and normal form are described in 

Section 2.3.1. 

2. DATABASE MODEL 
The basic graph definition is extended for our graph 

database model as follows: 

A database is a set of graphs, D = {G1, G2, …}.  Each 

graph, is a set of connected components, Gi = Ci = {c1, 2, 

…}. All the components in a graph share a common vertex 

id space, i.e. some vertex ids may exist in multiple 

components within the same graph. 

The definition of connected component used in this here is 

specific, adhering to the definition of a Common Schema 

Tree (CST) which is given later.  For the moment, the 

important property is that these components can be written 

as: 

cj = {V, SV, E, SE} 
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where Sv = {A1, A2, …} is the set of attributes associated 

with the vertex schema and SE = {B1, B2, …} is the set of 

attributes associated with the edge schema.  Each vertex 

has a unique id associated with it that is not part of its 

schema. 

Figure 1 provides an example general graph.  Each vertex 

has a vertex id.  The vertices and edges also have arbitrary 

schemas associated with them.  For example, vertex 2 

contains a tuple that has attributes A and B and the directed 

edge from vertex 2 to vertex 3 has attributes C and D. 

1

2

3

4{C}

{A}

{E}

{C}

{A,B}

{C,D}

{A,B}

{B}
{D}

{D}

5
{F}

{G}

 

Figure 1: A General Form Graph 

Using a notation where a different schema can be 

associated with each vertex and each edge, this graph can 

be represented as: 

G = {  {1{A},2{A,B},3,{A,B},4{B},5{F}}, 

 {(1,2){E},(2,1){C},(2,3){C,D},(2,4){D}, 

   (3,1){C},(4,3){D},(5,3){G} } } 

Figure 2 illustrates the same graph after it has been 

decomposed into one instance of a normal form.  Note that 

each component is connected and that some of the vertex 

ids occur in multiple components.  In addition, each 

component has the same set of attributes for its vertices and 

the same set of attributes for its edges. 

Using the notation introduced earlier, this normal form 

graph instance can be written as: 

G = C = {{{1,2,3}, {A}, {(1,2),(2,3),(3,1)}, {C}}, 

{{2,3,4}, {B}, {(2,3),(2,4),(4,3)}, {D}}, 

{{1,2}, {}, {(1,2)}, {E}}, 

{{3,5}, {}, {(3,5)}, {G}}, 

{{5}, {F}, {}, { }} } 
Since each of the components contains tuples that share the 

same schemas, they are kept on secondary storage together.  

The goal is to partition the graph data in a logical way to 

facilitate various features that perform better in the 

presence of locality.  These range from basic functions like 

searches based on attribute conditions [5,6] to higher level 

functions like sharding for reliability and performance in a 

distributed implementations [12,13]. 
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Figure 2: An Instance of a Normal Form Graph 

2.1 The First Graph Algorithm: 

Connectedness 
The first contribution associated with this paper beyond the 

model itself is that we can potentially exploit the structure 

of this decomposition to improve graph algorithm 

performance operationally on large datasets.  Perhaps the 

most basic graph algorithm is the test for whether two 

nodes, v1 and v2, are connected.  This test is typically done 

by executing the aforementioned Dijkstra’s algorithm on 

the graph, or by a Breadth or Depth First Search [3].  The 

best known running time for these algorithms is O(nlogn) 

where n is the number of vertices in the general graph. 

The decomposition just described yields the ability to 

determine connectedness between vertices across 

components in O(n) time.  This result is made possible by 

the relatively expensive graph import operation.  The work 

associated with the expensive import is thus amortized 

across potentially many graph connectedness test 

operations. 

There are a number of approaches to accomplishing set 

intersections in O(n) time, e.g. [14].  Hashing one of the 

input sets is a common technique.  To take advantage of 

this performance result, we need to show that our set of 

connected components can be used to perform the general 

connectedness test using just a set intersection. 

The proof is given for any arbitrary general graph, G.  The 

overall proof is dependent on the property that the 

components in C fully represent the general graph G.  This 

description is given in the Appendix but for our purposes 

here, G and the set of components in C share exactly the 

same vertices and edges. 

There are two cases 1) if G is connected, then a set 

intersection between component vertex sets will prove 

connectedness and 2) if no intersection between vertex sets 

yields a single connected component that contains both 

vertices, then they are not connected in G. 



In the first case, if G is fully connected, there exists a 

sequence of unions between the components in C that will 

yield a single connected component that contains both 

vertices being tested. A set of unions of the components in 

C will eventually testing for connectedness between 

elements of C means finding some set of intersections 

between vertex sets such that their union results in a single 

connected component.  Since C fully represents G, testing 

connectedness can be accomplished using a set intersection 

between the vertex sets of the components in C. 

In the second case, if G is not fully connected, it cannot be 

represented as a single component. As G and C are 

equivalent, there can be no union of connected components 

from C that form a single connected component that 

contains both vertices.  Testing for not connected between 

elements of C means proving no intersections exists 

between sets that will allow them to be unioned into a 

single component.  Since there is, by definition, no subset 

of C that can yield this connected single component after 

unions, testing for not connected between vertices in C 
means proving no series of intersections exists that allow 

them to be unioned into a single component. 

As a G must be either connected or disconnected, testing 

for connectedness in G can be solved as a set intersection 

problem □. 

Other graph algorithms may also be able to take advantage 

of this internal representation to yield amortized results.  

Note that this algorithm is based on a series of intersection 

operations between the components of C.  Intersection is 

one of several logical operations that can be performed on 

the components based on they’re have common schemata.  

Section 2.3 expands on this idea to define a set of 

operations and the basis for an algebra that is briefly 

outlined in Section 2.4. 

2.2 Pattern Matching Affinity 
The second observation regarding this graph database 

model is that the structures of these normal form graphs 

lend themselves to how queries are formulated and then 

executed against graphs.  We give several examples. 

Consider the two query languages SPARQL [6] and Cypher 

[5].  Both of these languages yield searches over 

heterogeneous graphs for existential paths.  Path criteria are 

typically specified using conditions found in WHERE 

clauses, i.e. logical and data type expressions. 

Consider the following example SPARQL query that 

matches the graph pattern on each graph in a dataset and 

forms solutions which have the src variable bound to the 

elements of the graph being matched. 

SELECT ?src ?bobNick 

WHERE 

  { 

    GRAPH ?src 

    {?x foaf:mbox <mailto:bob@work.example>. 

     ?x foaf:nick ?bobNick 

    } 

  } 

The WHERE clause seeks the values of elements in the graph 

based on their schema names, e.g. foaf:???.  Whether 

vertex or edge data, matches will search values associated 

with attributes in matching parts of the schemas to find 

solutions. 

Consider the following example CYPER query: 

MATCH 

 (a:Person)-[:KNOWS]->(b)-[:KNOWS]->(c), 

 (a)-[:KNOWS]->(c) 

WHERE a.name = 'Jim' 

RETURN b, c 

This query is based on a graph with KNOWS as an edge label 

and vertices representing individual people.  The pattern 

matching is based on the query variables, a, b, and c.  

Neo4j will search the graph for instances of paths that 

support the assertion that a and b who know each other and 

know other people in common.  c represents the common 

person that a and b both know each other.  Note the WHERE 

clause here is being used to look at a single attribute with  

its associated schema across the heterogeneous graph. 

As a third example, consider again Dijkstra for computing 

Single Source Shortest Paths.  This algorithm is 

representative of a variety of graph algorithms that are 

based on a comparison function that uses edge weights.  

This function will typically require that the two “weights” 

of the elements along the edge path be of the same type, or 

schema attribute.  Since the normal form separates like data 

elements by schema attributes, comparisons relevant to the 

schemas of one normal form graph can be done 

independently from the rest of the general graph and 

efficiently since the data is stored together. 

In all three examples, searches across a graph will tend to 

partition themselves into elements that have comparisons 

that are between two values of the same type.  This basic 

behavior maps cleanly onto the separated components 

based on their schemas in this model representation.  Each 

expression element will display locality during its iterative 

searches which bodes well for performance in algorithm 

execution. 

This locality can also be exploited in distribution.  For 

example, the current grdb code base uses a storage layer 

that is based on local storage devices.  However, the 

database can be extended to make use of a distributed 

storage layer, e.g. distributed file systems or key-value 

databases [15].  Many of these implementations refer to 

their replicated, distributed chunks of data as shards.  A 

natural mapping from this model would be to store 

individual components in shards. 

2.3 Component Operations 
Structuring data using graphs allows users to take 

advantage of various graph algorithms.  This section 

provides a set of basic operations upon which graph 

algorithm implementations can be based.  Figure 3 



illustrates this operational flow in the grdb graph database 

implementation. 
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Figure 3: Graph Database Operations 

Typically, a general form graph will be imported into the 

database implementation.  This import executes an instance 

of the conversion from general to normal form algorithm.  

Likewise, the general form graph can be reconstituted by 

executing the export function.  

Once imported, any graph level algorithms, e.g. Dijkstra, 

Minimum Spanning Tree (MST), Strongly Connected 

Components (SCC) [3], etc. are executed in the context of 

the normal form representation.  A set of component level 

operations, i.e. select, project, and join, that are analogous 

to the those found for manipulating tables in the relational 

model are provided for manipulating the connected 

components within a graph to accomplish the higher level 

graph algorithm’s functions. 

These component operations also form the basis of an 

algebra similar to the relational algebra.  This algebra can 

support query optimizations. 

2.3.1 Decomposition to Normal Form 
In the database implementation, conversion to normal form 

occurs during the import of a graph (perhaps from some 

standard file format, e.g. RDF [7], into the database. 

This operation will be defined as follows for the inclusion 

in the component algebra discussed later. 

C = δf (G) 

where f is a set of functional dependencies (see Section 

2.3.1.3) 

Convert to normal form is accomplished using an algorithm 

that bears resemblance to Kruskal’s algorithm [3] for 

computing minimum spanning trees and Ullman’s 

algorithm for subgraph isomorphism [10].  That is, a set of 

connected components is incrementally built that have the 

same vertex and edge schemas by decomposing the general 

graph. 

While there are many ways to decompose a graph, in this 

work we focus on the schemas associated with the vertices 

and edges as the basis for decomposition.  The algorithm 

builds a set of constant schema trees (CST) that fully 

represent the general graph.  It does this by extracting CSTs 

from the general graph until the general graph is consumed. 

Given our schema augmented representation of a general 

graph G, define a set of CSTs as a set of components, C, 

with fixed schemas initially as the empty set. 

Select a vertex in u ∈ V to begin a new CST. Search each 

neighbor of u, v ∈ V from the general graph for the vertex 

with the largest common schema.  A new graph c is then 

defined by the common schemas associated with u and v 

and the schema associated with the edge, (u, v) ∈ E. The 

result is c = ({u,v},{(u,v)}) 

C = {} 

while (V != {}) do 

 Select u ∈ V 

Select v  ∈ neighbors(u) with the largest schema 

common to u and v 

if no such vertex v exists then 

Complete-Edges(G) 

Complete-Vertices(G) 

break 

 endif 

 new c = ({u,v},{(u,v)} 

CST-Grow(c, G) 

Project c out of G 

Insert c in C 

endwhile 

 

2.3.1.1 Growing the CST 
The selection of the first and second vertices and the first 

edge are crucial to the resulting set of components that are 

yielded.  This process can be steered by user semantics by 

introducing a concept analogous to functional 

dependencies.  This idea is discussed in a later section. 

Once the initial vertices and edge are chosen, the vertex 

and edge schemas for the new component are set.  The 

algorithm then proceeds to successively search the 

neighbors of this growing component.  During each 

iteration, another vertex and edge are chosen to add to the 

component.  The choice of which neighbor is made by 

matching the vertex and edge schemas to those of the 

neighbors.  If they are a subset of one or more vertex, edge 

pairs, then any desired criteria (probably driven by a query 

language condition of some sort) is used to decide which. 

CST-Grow(c, G) 

 N = neighbors(c) 

 

Search the edge set between c and N for an edge 

(u, v) with u ∈ V and v ∈ N that have the largest 

schemas in common with c 

 

If no such edge exists then return 

Remove v from G and insert (u, v) into c 

CST-Grow(c, G) 

end 

 

When a vertex and edge pair is selected for addition to the 

component (either initially or during growth), the vertex 



and edge schemas may be subsets of the vertex and edge 

schemas from the general graph. 

After the new component with its fixed schemas cannot be 

added to, it is used as a projection to remove attributes from 

the general graph.  This procedure is then repeated to grow 

another constant schema component from the remaining 

general graph.  When all the vertices and edges of the 

original general graph are consumed, i.e. V and E both 

become empty sets, the algorithm terminates. 

2.3.1.2 Taking Care of Loose Ends 
There may be a point in the execution of this algorithm 

when all the pairs of vertices have distinct attributes.  After 

that, all the edges are made into components that contain an 

edge schema and the two vertices that have empty schemas.  

When all the edges have been removed, each remaining 

vertex becomes a single vertex component. 

CST-Complete-Edges(G) 

If no edges remain in G return 

Remove an edge e = (u,v) from G 

 new c = ({u,v},{(u,v)}) 

Insert c in C 

CST-Complete-Edges(G) 

end 

Each c created in this construction has the entire edge 

schema from that edge.  The two vertices have no schemas 

however, only their vertex ids. 

A similar construction is then done with the remaining, 

edgeless vertices.  Each c created by this algorithm takes on 

the entire vertex schema of that vertex. 

CST-Complete-Vertices(G) 

if no vertices remain in G return 

Remove a vertex v from G 

new c = ({u},{}) 

Insert c in C 

CST-Complete-Vertices(G) 

end 

2.3.1.3 Functional Dependencies 
The selection of the first and second vertices and the first 

edge during the initial selections for a CST are crucial to 

the resulting set of components that are yielded.  If the first 

vertex has a schema with more than one attribute and/or the 

first edge has a multi-attribute schema, it is possible to 

specify that subsets of these attributes be treated as 

functionally dependent for the purposes of decomposition.  

Such grouping might be appropriate based on data 

semantics for example. 

The analogy here to functional dependencies in the 

relational model has to do with the observation that some 

relational normal forms, e.g. 3rd Normal Form, typically 

take functional dependencies into account when 

restructuring tables.  This concept is analogous to grouping 

the vertex and edge schemas of the general graph to steer 

the decomposition algorithm yielding potentially different 

component sets. 
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Figure 4: A Normal Form Graph Decomposition Based 

on a Functional Dependency 

Figure 4 illustrates this idea.  Assume that the schema 

associated with vertices 2 and 3 from Figure 1 are defined 

as A functionally determines B or A→B.  This dependency 

is asserted when the decomposition algorithm is applied 

during the graph import.  The schema {A,B} are not treated 

as separate attributes for purposed of deciding the greatest 

common schema during the initial seeding of a CST.  This 

causes the component {{2,3},{(2,3)}} to be chosen first 

with the remaining components yielded as a consequence. 

2.3.2 Intersection and Union 
The remainder of Section 2.3 is a description of several 

operators that form the basis of a graph component algebra 

based on the normal form.  For all of these descriptions, the 

general form graph in Figure 1 and the decomposition in 

Figure 2 will be used throughout. 

The graph components are composed of sets of vertices and 

edges.  The first operators are component intersection and 

union.  As we have seen, the intersection operator is used 

during the execution of connectedness tests. 

In the case of intersection, the vertex sets of each 

component and the edge sets for each component are 

intersected.  For union, the vertex sets for each component 

and the edge sets for each component are unioned.  In both 

cases, the schemas for the two components are unioned. 

Given two components c1 and c2, the intersection creates a 

new component c’ as c’ = c1 ∩ c2 where: 

1) V’ = V1 ∩ V2  

2) E’ = E1 ∩ E2 

3) Sv’ = SV1 ⋃ SV2 

4) SE’ = SE1 ⋃ SE2 

Figure 5 illustrates and example where the two large 

components in Figure 2 are intersected. 
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Figure 5: Intersection of the Two Large Components in 

the Decomposition from Figure 2 

c’ = {{2,3}, {A,B}, {(2,3)}, {C,D}} 

Given two components c1 and c2, the union creates a new 

component c’ as c’ = c1 ⋃ c2 where: 

1) V’ = V1 ⋃ V2 

2) E’ = E1 ⋃ E2 

3) Sv’ = SV1 ⋃ SV2 

4) SE’ = SE1 ⋃ SE2 

Figure 6 illustrates and example where the two large 

components in Figure 2 are unioned. 
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Figure 6: Union of the Two Large Components in the 

Decomposition from Figure 2 

c’ = {{1,2,3,4}, {A,B}, {(2,1),(2,3),(2,4),(3,1),(4,3)}, {C,D}} 

The union is analogous to an outer join in the relational 

model.  This is because the union joins the structures, 

collapsing on vertex ids, and unions the schemas.  The 

resulting component has the same vertex schema for all of 

its vertices and the same edge schema for all of its edges.  

If, as in the case of these decomposed components, they 

were originally drawn from a general graph that had 

varying schemas across its vertices and edges they now 

potentially have a larger, more uniform schema than before 

decomposition.  Thus, performing a union of the 

decomposed components does not yield the exact original 

general graph.  The new schema attributes are given default 

values. 

2.3.3 Projection 
For a normal form component, a projection creates a new 

component such that: 

1) the vertices and edges of the new component are 

equal to those in the given component 

2) the vertex and edge schemas of the new 

component are subsets of the vertex and edge 

schemas of the given component 

This operation is analogous to projection for the relational 

model.  Instead of slicing a relation by attribute, we slice 

away some of the user data associated with the vertices and 

edges of the component while leaving the component 

structure intact. 

The result is a component with the same vertices and edges 

but with fewer attributes associated with the vertex and 

edge schemas.  Specifically, a new component, c’ = {V’, 

SV’, E’, SE’}, is generated by applying the projection 

operator, π, to c: 

c’ = πX,Y(c) 
where: 

1) V’ = V 

2) E’ = E 

3) SV’ = X ⊆ Sv 

4) SE’ = Y ⊆ SE. 

Figure 7 illustrates a projection on the component given in 

Figure 6.  The structure of the component remains the 

same.  Only the vertex and edge schemas change. 
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Figure 7: A Projection on the Component in Figure 5 

πA,C(c) = {{1,2,3,4}, {A}, {(2,1),(2,3),(2,4),(3,1),(4,3)}, {C}} 

If the attributes specified to the projection are empty sets, 

the data associated with the schemas is cleared.  Projection 

can thus be used to clear all the data from a normal form 

graph.  Simply iterate over the components of the graph 

and project out all their schemas.  This operation clears all 

the data from the normal form graph but leaves its structure 

intact. 

2.3.4 Selection 
For a given component, a selection creates a new 

component where the vertex and edge schemas are equal to 

the vertex and edge schemas of the given component.  

Also, the vertices and edges contained in the new 

component have the following properties: 

1) the vertices in the new component are a subset of 

the vertices in the given component 

2) the edges in the new component are those from the 

given component such that each edge endpoint 

must be a vertex in the new component 

This operation is also analogous to its counterpart in the 

relational model.  Similar to slicing tuples out of a relation, 

this operation slices a component with fewer vertices and 

edges but with the same vertex and edge schemas.  



Specifically, a new component, c’, is generated by applying 

the selection operator, σcondition, to c: 

c’ = σcondition(c) 
where: 

1) V’ ⊆ V 

2) E’ ⊆ E such that ∀e ∈ E’, such that if e= (vi, vj), 

then both vi, vj ∈ V’ 

3) Sv’ = Sv and SE’ = SE 

4) all the vertices and edges in V’ and E’, 

respectively, meet the condition specified by 

condition. 

Figure 8 illustrates an example selection.  Consider a 

condition where the value associated with the C attribute 

yields only the edges (1,2) and (2,4).  The resulting 

component has a different structure but the same schemas 

as the input component. 
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Figure 8: An Example Selection on the Component in 

Figure 6 

σcondition(C) (c) = {{1,2,4}, {A,B}, {(2,1),(2,4) }, {C,D}} 

It is possible that this operation can result in disconnected 

components.  The database implementation discussed later 

creates new components for each disconnected result. 

2.3.5 Inner Vertex Join and Conversion to General 

Form 
Consider the decomposition given if Figure 2.  Since this 

set of components fully represents the general graph given 

in Figure 1, it is possible to reconstruct the general graph 

from the normal form components.  This operation is 

referred to as an Inner Vertex Join. 

Given a set of components C = {c1, c2, …, cn}, the inner 

join yields a general graph, G.  The vertices of G are the 

union of the vertices across the components of C.  The 

edges of G are the union of the edges across the 

components of C.  The schema for each vertex in G is the 

union of the schemas in each component that the vertex 

appears in.  Likewise, the schema for each edge in G is the 

union of schemas in each component that the edge appears 

in.  This operation is denoted: 

G = ⨝(C) 

Since C is a set of components, this expression can be 

written as: 

G = ⨝({c1,c2,…,cn}) 

If this operation is applied to a set of components that were 

decomposed from a general graph, and these components 

fully represent the general graph, then this operation can be 

used to losslessly reconstruct the original general graph.  

For example, if C is the set of components in Figure 2, the 

Inner Vertex Join of these components yields the general 

graph originally given in Figure 1. 

2.4 Component Algebra 
An interesting observation yielded by the definition of 

these operators is the ability to treat them as algebraic.  

This means we should be able to affect query optimizations  

(not discussed here) based on transformations and cost 

models. 

Table 1: Component Algebraic Rules 

 

3. IMPLEMENTATION 
This section provides an overview of the implementation 

called grdb [16].  The implementation is targeted at a single 

engine running on a single system with local file storage.  

The database engine manages a set of graphs that are each a 

set of decomposed, connected components. 

When new components are created, all user data associated 

with the vertices and edges are duplicated.  This allows for 

query languages to use these operations as pass by value 

inputs and as intermediate values when building 

expressions based on the algebraic operations given in the 

last section.  This approach facilitates the implementation 

of query transformations to address query performance. 

Given the augmented graph description, the representation 

used to implement a component is based on an edge list 

representation and consists of: 

1) Vertex schema 

2) Edge schema 

3) Set of vertices where each vertex is identified by a 

globally unique vertex id and each vertex has a 

tuple associated with it that is described by the 

vertex schema 

4) Set of edges where each edge is defined by pair of 

vertex ids that identify a directed edge from id1 to 

id2.  Each edge has a tuple associated with it that is 

described by the edge schema. 

Definition Commutative Associative Distributive 

Decomposition 
C = δf (G) 

N/A N/A N/A 

Intersection 

c’ = c1 ∩ c2 

c1 ∩ c2 = 

c2 ∩ c1 

(c1 ∩ c2) ∩ c3 = 

c1 ∩ (c2 ∩ c3) 

N/A 

Union 

c’ = c1 ⋃ c2 

c1 ⋃ c2 = 
c2 ⋃ c1 

(c1 ⋃ c2) ⋃ c3 = 
c1 ⋃ (c2 ⋃ c3) 

N/A 

Projection 
c’ = πX,Y(c) 

No No c’ = πX1٧X2,Y1٧Y2 (c)= 

πX1,Y1(c) ⋃ πX2,Y2(c) 

Selection 

c’ = σcondition(c) 

No No c’ = σcond1٨ cond2 (c)= 

σcond1 (c) ∩ σcond2 (c) 

Inner Join 

G = ⨝(C) 

Yes, any 
component 

order 

Yes, any 
sequence of 

pairings of 

components 

N/A 



5) A list of enum types associated with this graph 

The basic implementation provides base operations and a 

simple shell to support command line access to these 

operations.  Work is in progress to port both OpenCypher 

and SPARQL query languages to grdb. 

These basic data structures exist in two places.  The graphs 

are maintained persistently on disk and elements of these 

structures are brought into memory as needed by various 

operations.   

Each graph in the database has a numbered directory under 

the home ~/.grdb  Each graph directory contains a set of 

numbered component directories.  Each component 

directory contains the files listed in Figure 9. 

tuple

id

. 
. 
.

/v

~/.grdb/<graph>/<component>

ename

name

. 
. 
.

bt

/sv /e

ename

name

. 
. 
.

bt

/se

tuple

id2

. 
. 
.

id1

string

pool

. 
. 
.

name

/enum

No ordering in any of these files  

Figure 9: grdb On-Disk Graph Data Structure 

The /enum file contains the enums defined for both vertex 

and edges schemas for this component.  Each entry in this 

file contains the enum name and a list of strings that 

comprise the enum values.  These enums are available for 

both vertex and edge types. 

The /sv file contains the vertex schema.  The /se file 

contains the edge schema.  Each file is a list of attributes 

made up of a base type, attribute name and enum pointer if 

the base type is enum. 

The /v file contains the vertices for the component and the 

/e file contains the edges.  The vertex file entries are the 

vertex id followed by its tuple if it exists.  The edge file 

entries are the pair of vertex ids followed by the edge tuple 

if it exists. 

All of these files are maintained unordered.  That means it 

is necessary to iterate over them to find specific elements.  

The grdb implementation reads and writes enums and 

schemas in their entirety.  Enums and schemas should be 

relatively small compared to the graph vertex and edge data 

and should fit in main memory.  Since the bulk of the graph 

data is kept in the vertex and edge files, operations that 

make use of these files typically shuffle portions of them in 

and out of main memory as needed.  This is necessary since 

the assumption is that these data may be larger than main 

memory. 

The division of component data into vertex and edge lists is 

intentional.  Since the vertex file maintains a list of vertices 

that are all the same schema and the edge file maintains a 

list of edges that are all the same schema, each will be 

stored together and iterations take advantage of locality.  

The uniform schema also allows for indexes to be built in a 

manner analogous to indexes on tables in the relational 

model.  This can be done if rapid searches across the vertex 

or edge data are required. 

Figure 10: grdb In-Memory Graph Data Structure 

Figure 10 illustrates this data structure when kept in 

memory.  This diagram shows the relationships between 

various structures.  This entire data structure is not 

expected to be instantiated at any given time.  Rather its 

elements and structure serve as a cache template that allows 

portions of the on-disk data to be held in memory 

temporarily. 

The implementation includes routines to bring portions of 

the on-disk structure into memory on demand.  For enums 

and schemas, the entire structure is typically read in or 

written out to disk.  These structures are small compared to 

the vertex and edge data and should fit in main memory.  

For vertices and edges, the assumption is that these files are 

larger than main memory so subsets of these files are 

cached into memory as needed. 

3.1 Schema Base Types 
The implementation uses base data types to represent graph 

data.  The enum type is composed of two chars that 



represent indices.  The first is the index of the enum with 

respect to the containing graph and the second is the index 

of the item within the enum. 

 

3.2 Enum Types 
Enum types provide an efficient way to represent groups of 

string values as integer values. These types improve 

efficiency by allowing value comparisons to be done based 

on integer values rather than string comparisons.  The 

importation of a graph evaluates strings in the graph data 

and converts them to enums internally. 

Each enum type is represented internally by a string pool.  

A string pool is a list of strings and an array of indexes to 

their locations in a single allocated block of memory.  This 

packed representation provides efficient storage for the 

strings on-disk. 

4. RELATED WORK 
Interest in graphs as a basis for database implementation 

has increased lately.  Recent examples of large scale graphs 

are social networks, CRM, and content distribution.  

Internet scale graph datasets are proliferating, e.g. 

[18,19,20].  Recent database conferences contain many 

papers on algorithmic work on these large graph datasets.  

Less work has been done on the internal design and 

implementation of graph engines. 

That said, the idea of decomposing graphs for efficient 

storage has also been explored recently.  The example 

given in [8] represents a recent graph database design that 

focuses on graph decomposition as well.  In this work 

however, the focus in on finding and storing subgraphs that 

have specified degrees, referred to as k-cores.  The 

motivation is similar, to find a decomposition that supports 

efficient access to large graph dataset based on graph 

algorithms.  The work focuses on identifying these 

commonly used graph cores in order to hold them in main 

memory.  The work in [9] focuses on determining clusters 

within a large graph based on “structural similarity.”  This 

similarity can be described anecdotally as subgraphs that 

are well connected and that are each connected to each 

other by only a few paths.  This overall approach bears 

similarity to the k-cores described in [8] in that both yield 

decompositions of a larger general graph based only on  the 

structure of the graph.  They do not take into account the 

schemata associated with the graph. 

Neo4j [5] is a recent graph database product.  This product 

provides extensive graph database modeling capabilities 

and an interesting graph database query language called 

Cypher.  The Neo4j data model is based on general graphs 

in our terminology.  They refer to this as the Labeled 

Property Graph. 

In a sense, this work targets exactly what this reference 

calls, the “holy grail of graph database scale.” (p.169)  

Rather than focusing on the modeling and language aspects 

of the database, this paper focuses on the internal 

implementation to directly address performance. 

Regarding Neo4j’s internal implementation: 

“Neo4j stores graph data in a number of different 

store files. Each store file contains the data for a 

specific part of the graph (e.g., there are separate 

stores for nodes, relationships, labels, and 

properties). The division of storage responsibilities

—particularly the separation of graph structure from 

property data—facilitates performant graph 

traversals, even though it means the user’s view of 

their graph and the actual records on disk are 

structurally dissimilar.” 

Neo4j also appears to use a separated internal 

representation of the graph but does so in a way differently 

than presented here.  Graph structure (nodes and 

relationships) are stored separately from user data (labels 

and properties).  While grdb will provide the same 

dissimilar internal representation from the user’s view, the 

normal form graph representation keeps structure and user 

data together.  This choice is driven by the desire to 

decompose based on schema to enable the formal treatment 

that the normal form enables. 

Finally, we compare our approach to a survey of graph 

database models work up until 2008 [4] in order to place 

the recent work in context.  Early approaches used a simple 

graph model as a basis but typically allowed for zero or one 

value to be associated with edges and vertices.  The 

research direction moved towards allowing for more 

complexity, not necessarily uniformly typed, across the 

graph representation.  This followed from the interest in 

object orientation and support for complex documents as 

data types in databases that emerged at the same time.  The 

approach described here also extends the complexity of 

data associated the vertices and edges but provides an 

internal model that focuses on the similarities in the data 

across the graph to allow for efficient storage 

representations. 

This reference discusses major features like integrity 

constraints, a query language, redundancy, and functional 

dependencies across the breadth of graph database 

implementations up to that time.  This work focuses on the 

underlying implementation of the database engine and so 

Base Type Length (chars) 

CHAR 1 

VARCHAR 256 

BOOL 1 

ENUM 2 

INT 8 

FLOAT 4 

DOUBLE 8 

DATE 10 

TIME 8 



the feature set given in Table 2 that reflects grdb is based 

on that. 

Table 2: grdb Implementation According to the 

Standard Characteristics defined in Appendix A of [4] 

Characteristics/Database Model 
grdb 

2016 

Basic 

Foundation 
Graph Model 

x 

Digraph 
Node Labeled x 

Edge Labeled x 

Support 
Schema x 

Tuples x 

Query Language 

Algebraic – Procedural x 

Logic – Declarative x 

Query 
SPARQL port in 

progress 

Path Queries 
OpenCypher port 

in progress 

Integrity 

Constraints 

Schema Instance 

Consistency 

Per Component 

Functional Dependencies x 

Implementation x 

Motivation 
Efficiency for 

large graphs 

 

5. DISCUSSION 
The contributions of this paper provide a rich starting point 

for additional research.  1) The graph data model with its 

operators and support for functional dependencies, 2) the 

O(n) connectedness test across the general graph using 

component vertex set intersections as a template for other 

graph algorithm implementations, 3) the affinity for 

separating iterations yielded for queries based on WHERE 

clause expressions and 4) an implementation approach that 

takes advantage of file system locality 

Schema spanning trees as the component structure should 

be explored in more detail.  The simple algorithm outlined 

in this paper can be replaced with any number of 

algorithms. This work provides and analogy for functional 

dependencies that “drives” decomposition but other criteria 

for steering decompositions to address specific algorithms 

are possible. 

The use of constant schemas for the normal form graphs 

makes indexing attributes across a general graph easier to 

implement.  Vertex and edge files are maintained 

unordered but the the contiguous data storage enabled by 

this approach yields opportunities for efficient sparse 

indexes to be built on both vertex and edge sets. 

Definition of additional normal forms that have their bases 

for decomposition other than uniform vertex and edge 

schemas should be explored. 

The idea of functional dependencies and normal forms 

mean that graph database design theory, in a manner 

analogous to Enitity/Relationship diagrams [17] should be 

explored based on this model. 

This graph database model can serve as a basis for 

undirected graphs.  The typical conversion for each 

undirected edge to two directed edges is the basis here as 

well. The two edges will have identical edge tuples that 

will need to be kept consistent during graph operations.  

This consistency requires a pairing of edges to be added to 

the edge representation.  This is considered to be an area 

for future work. 

The authors will not patent this work.  The implementation 

is and will remain available as open source at [16].  The 

authors would like to thank Craig Swank of SendGrid for 

motivational discussions. 
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APPENDIX 
Theorem 1. 

Given a graph G, fully represented (Def. 3) as a set of 

connected components (Def. 1), C, testing for 

connectedness G is equivalent to a set intersection problem 

between the components of C. 

Proof.  All paths in C exists in G (Lemma 1) and all paths 

in G exists in C (Lemma 2). C and G are path equivalent. 

If there is an ordered list of components in C such that an 

intersection containing at least one common vertex exists 

between every component and the union of all its previous 

component's vertex sets, then C is connected. (Lemma 4). 

When C is disconnected, no such ordered list can be found 

(Lemma 4). Therefore, testing C for connectedness can be 

solved as a set intersection problem.  Since connectedness 

determines connecting paths and C and G are path 

equivalent, testing for connectedness in G is equivalent to a 

set intersection problem. □ 

Definition 1. Let c be a subgraph of G (Def. 2). c is 

considered a connected component if there exists a pathij in 

c for all vertex pairs where i, j are elements of the vertex set 

V(c). 

Definition 2. 

Let G be a graph with a vertex set, V(G), and an edge set, 

E(G). Let g be another graph with a vertex set, V(g), and an 

edge set, E(g).  g is a subgraph of G if V(g) is a subset of 

V(G) and E(g) is a subset of E(G). 

Definition 3. 

Given a graph G and a set of connected components C = 

{c1,c2,…,cn} where each ci is a subset of G, C fully 

represents G if and only if: 

⋃ 𝐸(𝑐) = 𝐸(𝐺)

𝑐∈𝐶

 

⋃ 𝑉(𝑐) = 𝑉(𝐺)

𝑐∈𝐶

 

Lemma 1. 

Given vertices i, j, for all pathij that transverse some 

component, c of C, these paths also exist in G. 

Proof.  By contradiction.  Assume that pathij can exist in c 

but not in G. The path can be described as a ordered set of 

edges, pathij is a subset of E(c). Since c is an element of C, 

E(c) is an element of E(G) (Def. 3). By the transitive 

property, pathij is an element of E(G) and pathij can be 

found in G. This is a contradiction exists so if pathij exists 

in c it also exists in G. □ 

Lemma 2. 

If a path exists in G then that same path is present in some 

subset of C. 

Proof.  By contradiction.  Assume pathij exists in G but is 

not present in any subset of C.  Since the path can be 

described as a ordered set of edges, pathij  a subset of E(G).  

By definition of fully represented (Def. 3), E(G) = 

⋃ 𝐸(𝑐)𝑐 ∈ 𝐶 . Based on this equivalence, pathi is a subset of 

⋃ 𝐸(𝑐)𝑐 ∈ 𝐶 .  Since no new edges are created when 

components union together, pathij must exists in some 

subset of C. But, this is a contradiction and therefore, if a 

path exists in G then that same path is present in some 

subset of C. □ 

Lemma 3. 

Two connected components ci and cj form a single 

connected component if and only if  𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅. 

Proof.  By contradiction.  Assume ci and cj are connected 

components where 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅, yet they do not form 

a single connected component. Since 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅, 

there is a vertex, v, such that 𝑣 ∈ 𝑉(𝑐𝑖), 𝑉(𝑐𝑗). A path exists 

between v and all elements of V(ci) and V(cj) (Def. 1). As 

such, a path exists between all elements of V(ci) and V(cj) 

forming a connected component. But this is a contradiction. 

Therefore, if ci and cj are connected components where 

𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅, they form a single connected 

component. 

Now assume ci and cj could form a single connected 

component but that 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) = ∅. If ci and cj are a 

single component, then pathxy can be found spanning both 

components (Def. 1). A path can be defined as an ordered 

set of vertices. For pathxy to span ci and cj, there must be a 

subset of the path that is a member of both V(ci) and V(cj) 

which allows the transition from one component to another 

to occur. This means that 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅ which is a 

contradiction. Therefore, ci and cj can be considered a 

single connected component if 𝑉(𝑐𝑖) ∩ V(𝑐𝑗) ≠ ∅. □ 

Lemma 4. 

C can form a single connected component if and only if 

there exists an ordering of the elements of C such that: 

∀𝑐∈𝐶 {⋃ 𝑉(𝑐𝑖)

𝑛−1

𝑖=1

} ∪ 𝑣(𝑐) ≠ ∅ 

Proof.  By Induction. 

https://github.com/fwmiller/grdb


Base Case: C1 = {c1}, c1 is by definition a single connected 

component so the base case holds. 

Inductive Step: Assume Cn = {cn} for n=1 per the base case. 

If Cn+1 = {c1, c2,…, cn+1} then V(cn+1) has a non empty 

intersection with V(Cn), then Cn and cn+1 are a single 

component (Lemma 3). Therefore, all elements up to an 

including cn+1 can be considered a single component. If no 

such intersection exists, while Cn may be a single 

component, the elements of cn+1 are not included in that 

component (Lemma 3). □ 


